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Abstract

Three polyurethane coatings were evaluated using dynamic mechanical analysis (Dh4A) to
investigate the relationship between dynamic mechanical properties and durability properties of
coated test panels. The current polyurethane solvent-based (SOL) formulation, used as a
chemical-agent-resistant camouflage top coat on all military tactical vehicles, was investigated,
along with newly developed water-reducible (WR) polyurethane coatings. The WR coatings
offer significantly reduced volatile organic compounds (VOC),  compared to the SOL system, and
thus represent environmentally compliant coatings. DMA investigations revealed that the two
classes of polyurethane coatings exhibit different dynamic mechanical properties, which are
attributed to different cross-liking mechanisms involved in film formation. The more uniformly
cross-linked SOL coating provides the best chemical-agent resistance (CAR) but the poorest
mechanical properties. Properties measured using DMA were sensitive to the degree of
isocyanate to hydroxyl indexing in the WR formulations, as well as the drying time of coatings
prior to evaluation. DMA investigations indicated that longer cure times at ambient temperature
(6 or more months) may adversely affect the mechanical properties of the SOL system and
potentially enhance CAR of the WR coating. Further studies involving aged coatings are
planned.
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1. Introduction

The U.S. Army utilizes polyurethane coatings as camouflage “topcoats” on all Army tactical

vehicles and aircraft. These coatings not only serve to camouflage vehicles but also provide

protection against chemical warfare (CW) agents. The coatings must retain their physical.

properties over a broad temperature range in widely varying climatic environments. Presently,

camouflage topcoats used on Army vehicles are comprised of a two-component solvent-based

(SOL) polyurethane. However, in an effort to meet current and anticipated Environmental

Protection Agency (EPA) regulations, as well as military requirements, the U.S. Army Research

Laboratory (ARL), Weapons and Materials Research Directorate (WMRD)  at Aberdeen Proving

Ground (APG), MD, has developed and patented a water-reducible (WR) two-component

polyurethane coating for military vehicles that exhibits a 50% reduction in volatile organic

compounds (VOC)  compared to the SOL system. The WR polyurethane maintains required

chemical-agent resistance (CAR) and exhibits superior properties compared to the SOL

formulation.

2. Background

The urethane polymer is formed by the reaction of a hydroxyl-terminated polyol with a

diisocyanate, as shown in reaction I.

n(OCN-R-NC&n(HO-R-OH) +!! ,r R ! !! 0 R 0% (‘)-* - - - - - - I -
Urethane Polymer

SOL systems are formulated with a slight excess of isocyanate (NCO). NCO-to-OH ratios

approximately equal to 1.1: 1.0 are typical for SOL polyurethane coating formulations. The

excess NC0 ensures complete reaction of the polyol and provides optimal film properties. Great

care is taken to ensure that excess moisture is not present in nonaqueous two-component

polyurethane formulations due to its undesirable reaction with isocyanate [ 1,2]. The reactions of
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isocyanate with water are shown in reactions 2 and 3. An unstable carbamic acid is formed,

resulting in generation of CO2 and amine. CO2 causes foaming and porosity in the film, and the

amine can further react with isocyanate, resulting in the formation of urea. In short, the resulting

film exhibits lower molecular weight and poor properties.

R -co2
R-N=C=O -I- H20 - [ R - N H- C - O H] - RNH2 (2)

R-NH2

Recent developments

high-performance coatings

(3)
+ R-N=C=O- R - N H - & N H - R

Urea

in water-borne polyurethane technology have enabled

to be formulate4 using water-dispersible polyisocyanates and

hydroxyl-functional polyurethane dispersions [3]. Hegedus et al. recently proposed a mechanism

for film formation of two-component water-borne polyurethane systems, suggesting that the

reaction between the isocyanate and water is sluggish compared to the reaction between

isocyanate and the hydroxyl terminated polyol, therefore enabling urethane formation to take

place [4, 51. In water-borne formulations, greater excess of NC0 is required to account for the

competing reaction between isocyanate and water. Typically, water-borne formulations are

indexed using excess NC0 ranging from 1.5 to 3.5. Early efforts within our laboratory focused

on formulations with NC0 to OH ratios of 2.0: 1.0 and 3.5: 1.0. While these films exhibited

enhanced properties compared to the SOL coating, they did not have the necessary CAR to pass

the Army’s requirement for nerve and blistering agents. For this reason, further investigation led

to the most recent formulations with NC0 to OH ratios of 5.0: 1.0. This level of indexing

provided CAR without a significant change in coating properties.

It is important to note that, although urethane formation occurs in the water-dispersible

formulations, other reactions producing amine and ureas are also prevalent (reactions 2 and 3).

Additionally, because of the excess isocyanate present in these systems, additional cross-linking
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reactions resulting in the formation of allophanate and biuret are also likely. Cross-linking

reactions of urethanes and ureas with isocyanate are shown schematically in reactions 4 and 5.

ff
R - N H - C - O R

Urethane

+  R - N = C = O  - R-Yc-oR
O = C - N H - R

Allophanate

(4)

8
a

R-l’$-C-NH-R’
R - N H - C - N H - R ’  + R - N = C = O  -

O=C-NH-R (5)

Urea Biuret

It is a likely assumption that the cumulative effect of the side reactions occurring during film

formation of the water-dispersible coatings results in films with less uniform or more

heterogeneous cross-links compared to the SOL films.  Dynamic mechanical analysis (DMA)

was utilized to investigate the mechanical properties of the different systems in an effort to

further our understanding of the structure/property relationships of these complex coatings.

3. Experimental

DMA and was performed on nonsupported coating films. These films were prepared by

spraying the coating onto release paper. The films were dried for varying lengths of time at

ambient temperature (25 k 2” C) before separating them from the release paper. Coating film

thickness varied between 160 p-280 ym. Data were normalized according to individual

sample dimensions.

DMA of the nonsupported films was performed using an Imass Inc. autovibron (automated

Rheo-200 rheovibron, Toyo Instruments). The samples were evaluated between -100’ C to

+150”  C at a heating rate of 2O Cknin. Data were collected at 1.1 Hz.

3



Formulations reported in this paper were pigmented conforming to color no. 34094 (green

383) as stated in MILG46168D [6], the U.S. Army specification for two-component

polyurethane coatings. Tests on coated panels were conducted according to MJL-C-46168D  [6].

4. Results and Discussion

A complete evaluation of the coating properties and test methodology according to

MIL-C-46168D  has been previously reported [6, 71. WR 3.5 and WR 5.0 both pass all of the

specification requirements, with the exception that WR 3.5 does not meet the necessary

requirement for CAR. Both WR formulations exhibit vastly improved VOC compared to the

conventional SOL system. Additionally, the WR formulations exhibit significantly improved

impact resistance and low temperature flexibility. These properties, determined in accordance

with MIL-C46168D  [6],  are shown in Table 1.

Table 1. Selected Properties of Coated Panels

Low-Temperature
Sample voca cARb* c Forward Impact Resistance Flexibilityc’  d

(g/liter) (M) (in-lb)

SOL -420 -20 52: 48: 28g F
WR 3.5 -180 -510 160: 148: 148g B
WR 5.0 -180 -98 l48.e 84.f 1W P

ML-C-46168 requirement = s 420 g/liter.
ML-C-46 168 requirement = s 180 pg.
Data reported after 7-&y  dry time.
P = pass, B = borderline/pass, and F = fail; failure is indicated by visible cracking in the coating after bending the
coated panel around a cylindrical mandrel at 0” C.
Data reported after lo-day dry time.
Data reported after 17-day dry time.
Data reported after 2Cday dry time.

Figure 1 shows the storage modulus, E’, vs. temperature for the three polyurethane coatings.

WR 3.5 exhibits the highest values for E’ in the rubbery plateau region of the curve. E’ is a
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Figure 1. E’ at 1.1 Hz After a lo-Day Dry Time.

measure of material stiffness and can be used to provide information regarding polymer

molecular weight, degree of cure, and cross-link density [S-lo]. The difference between the

storage modulus (AE?) in the plateau regions before and after the glass transition is related to the

degree of cross-link density. A smaller NY is associated with greater cross-link density [8, 91.

Measurements of AE’ for the three polyurethane coatings indicate that WR 3.5 and WR 5.0 have

slightly higher cross-link densities (smaller AE’) compared to the SOL system. These

experiments were performed on coatings allowed to dry for 10 days prior to evahtation.

Tan 6 of the polyurethane coatings is shown in Figure 2. The SOL coating exhibits a much

larger and sharper tan 6 peak compared to the WR coatings. The temperature associated with the

peak magnitude of tan 6 is defined as the glass transition temperature (Ts). The SOL system

exhibits a significantly lower Ts (43O  C) compared to the WR coatings (73” C) following a
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Figure  2. Tan 6 at 1.1 Hz After a lo-Day Dry Time.

lo-day dry time. The sharper tan 6 transition observed for the SOL coating suggests more

uniform cross-links compared to the WR coatings. WR 3.5 exhibits the broadest tan 6 transition

of the three coatings, suggesting the greatest degree of heterogeneity of cross-links. These results

were also observed in the loss modulus (E”) vs. temperature curves as shown in Figure 3.

WR 3.5 exhibits a very broad E” transition that is notably high over a broad temperature

range (-98” C to +80” C). E” of WR 5.0 is also broad compared to that of the SOL coatings.

High values of E” suggest greater mobility of the polymer chains associated with dissipation of

energy when the polymer is subjected to deformation [l 11. Thus, coatings exhibiting a high and

broad E” transition have the ability to absorb energy associated with impact. Therefore, the

DMA data helps to explain the superior impact resistance of WR 3.5 and WR 5.0 compared to
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Figure 3. E” at 1.1 Hz After a lo-Day Dry Time.

the SOL system. Although impact resistance was measured at ambient temperature (25” C

k2” C), the DMA data suggest that WR 3.5, in particular, may also exhibit superior

low-temperature impact resistance. The DMA data suggest that, while broad loss transitions

indicate superior mechanical properties such as impact resistance, sharper loss transitions, such

as those exhibited by SOL coatings, appear to be related to superior CAR. The nonuniformity of

cross-links, indicated by the broad E” and tan 6 transitions, may introduce voids in the polymer

matrix that allow greater amount of chemical agent to penetrate ,and become trapped in the

matrix. Therefore, DMA provides some insight into the fact that differences in cross-linking as a

result of film formation in the SOL and WR coatings result in optimization of different

properties.
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While WR 5.0 currently provides the best balance of chemical and mechanical properties,

WR 3.5 exhibits the most enhanced mechanical properties. Additionally, WR 3.5 requires less

isocyanate for formation of the coating, which is an important cost consideration for full-scale

production. It is interesting to note that, while SOL coatings exhibit a significantly lower Ts than

WR coatings, they also exhibit poorer low temperature (O” C) flexibility. At 25” C, all three

polyurethane coatings exhibit acceptable flexibility as measured by bending the coated panel over

a cylindrical mandrel (specified in ASTM D 522 Method B [IO]). The enhanced

low-temperature flexibility of WR’3.5 and WR 5.0 is believed to be the result of the broad loss

transitions shown in Figures 2 and 3.

DMA was also used to study the effect of coating dry time on mechanical properties. The

dynamic mechanical properties of SOL coatings were found to be much more sensitive to coating

dry time compared to the WR coatings. After all dry times, E’ (in the rubbery plateau) was

observed to increase with increasing temperature for SOL coatings, while the WR coatings

exhibited a flat rubbery plateau throughout the experiment. This was most pronounced after

17- and 24day  dry times and less pronounced after the 6-month dry time for SOL coatings. The

observation of increased E’ vs. temperature is shown in Figure 4 after a 24day dry time. These

data indicated that SOL coatings were not fully cross-linked at dry times less than or equal to 24

days at ambient temperature.

The cross-link density, determined by measuring AE’ between plateaus, is significantly

increased for SOL coatings after a 6-month dry time, as shown in Figure 5. Tan 6 peak

magnitude for the SOL coating was also significantly reduced when allowed to dry at ambient

temperature for 6 months. The increase in E’ and decrease in tan 6 peak magnitude strongly

suggest a notable increase in cross-link density after a 6-month  dry time for the SOL coating.

Although WR 5.0 also exhibited increased E’ after drying for 6 months, a negligible change in

tan 6 peak magnitude was observed. However, WR 5.0 exhibited a significant increase in Ts

after the 6-month dry time. WR 3.5 was not evaluated after 6 months. DMA data for SOL and

WR 5.0 coatings is shown in Table 2. The data suggest that, while SOL coatings may undergo

8



.

FigUl

l.a&ll ,

-wR3.5

NJ
l.ocE+lO  -

E

3

it
z

i&i
l.wcIoB  -
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Table 2. DMA Data Measured at 1.1 Hz of SOL Coatings and WR 5.0 With Respect to
Coating Dry Time

Sample Dry Time

SOL 10 days
SOL 6 months

WR 5.0 10 days
WR 5.0 6 months

,a&

43
37
73
91

Tan 6 Peak Magnitude

0.584
0.336
0.379
0.384

E’ at 100” C
(dynkm2)

1.06 x 10’
2.00 x log
1.13 x log
1.96 x 10’

increased cross-link density with respect dry time, the changes in WR 5.0 are notably different.

It is speculated that observed changes in DMA data for WR 5.0 after 6 months may indicate a

densification occurring in the coating. The DMA data indicate increased cross-link density of

SOL coatings after longer dry times that may actually result in reduced mechanical performance

due to brittleness associated with cross-linking. Evidence of densification observed for WR 5.0

may lead to enhanced CAR without further compromise of mechanical properties. Tests on

coated panels after longer dry times are necessary to confirm the DMA results. Although the

CAR associated with SOL coatings is desirable, CAR is obviously irrelevant if the mechanical

properties of the material cannot meet minimum durability requirements.

5, Conclusions

ARL-WMRD has successfully developed a WR chemical-agent resistant coating that meets

MILC46168D  [6] specifications and exhibits a significant reduction of VOC compared to the

currently used SOL polyurethane coating. The WR coating formulation exhibits superior

mechanical properties compared to the SOL system. While WR 5.0 meets CAR requirements,

WR 3.5 exhibits optimal mechanical properties that are important for long-term durability under

broadly varying environmental conditions observed in service. DMA provided insight into the

different chemistries associated with film formation of the SOL and water-dispersible

formulations, along with the effect of dry time on the dynamic mechanical properties of the

coatings. It was determined that the type of cross-linking required for superior CAR is different

.
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for that required to optimize mechanical properties. WR 5.0 may exhibit improved CAR and,

therefore, sharper loss transitions compared to WR 3.5 because of the additional cross-linking

associated with the excess isocyanate present in the WR 5.0 formulation. The more highly

cross-linked film may exhibit fewer voids that can trap chemical agents. The dynamic

mechanical properties of SOL coatings were shown to be much more sensitive to dry time

compared to the WR coatings, which may adversely affect coated panel properties of the SOL

system in service. Future work is planned to evaluate both WR and SOL coatings on test panels

to determine the mechanical properties, such as impact resistance, low-temperature flexibility,

and CAR, with respect to aging.
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